

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

http://oreilly.com/store/index.html
http://oreilly.com/ebooks/
http://www.android.com/market/
http://amazon.com
http://www.oreilly.com

Understanding Computation

Tom Stuart

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Understanding Computation
by Tom Stuart

Copyright © 2013 Tom Stuart. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Nathan Jepson
Production Editor: Christopher Hearse
Copyeditor: Rachel Leach
Proofreader: Linley Dolby

Indexer: Lucie Haskins
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

May 2013: First Edition.

Revision History for the First Edition:
2013-05-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449329273 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Understanding Computation, the image of a bear paw clam, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32927-3

[LSI]

1368200178

Table of Contents

Preface . vii

1. Just Enough Ruby . 1
Interactive Ruby Shell 1
Values 2

Basic Data 2
Data Structures 3
Procs 3

Control Flow 4
Objects and Methods 5
Classes and Modules 6
Miscellaneous Features 7

Local Variables and Assignment 7
String Interpolation 8
Inspecting Objects 8
Printing Strings 8
Variadic Methods 9
Blocks 9
Enumerable 10
Struct 11
Monkey Patching 12
Defining Constants 13
Removing Constants 13

Part I. Programs and Machines

2. The Meaning of Programs . 17
The Meaning of “Meaning” 18
Syntax 19
Operational Semantics 20

Small-Step Semantics 21

iii

Big-Step Semantics 42
Denotational Semantics 48

Expressions 49
Statements 52
Applications 54

Formal Semantics in Practice 55
Formality 55
Finding Meaning 56
Alternatives 57

Implementing Parsers 58

3. The Simplest Computers . 63
Deterministic Finite Automata 63

States, Rules, and Input 63
Output 64
Determinism 66
Simulation 66

Nondeterministic Finite Automata 69
Nondeterminism 70
Free Moves 76

Regular Expressions 79
Syntax 80
Semantics 83
Parsing 92

Equivalence 94

4. Just Add Power . 105
Deterministic Pushdown Automata 108

Storage 108
Rules 110
Determinism 111
Simulation 112

Nondeterministic Pushdown Automata 118
Simulation 122
Nonequivalence 125

Parsing with Pushdown Automata 125
Lexical Analysis 126
Syntactic Analysis 128
Practicalities 132

How Much Power? 133

5. The Ultimate Machine . 135
Deterministic Turing Machines 135

iv | Table of Contents

Storage 136
Rules 138
Determinism 141
Simulation 141

Nondeterministic Turing Machines 147
Maximum Power 148

Internal Storage 148
Subroutines 151
Multiple Tapes 153
Multidimensional Tape 154

General-Purpose Machines 154
Encoding 156
Simulation 157

Part II. Computation and Computability

6. Programming with Nothing . 161
Impersonating the Lambda Calculus 162

Working with Procs 163
The Problem 164
Numbers 166
Booleans 169
Predicates 172
Pairs 173
Numeric Operations 174
Lists 180
Strings 184
The Solution 186
Advanced Programming Techniques 191

Implementing the Lambda Calculus 197
Syntax 197
Semantics 199
Parsing 204

7. Universality Is Everywhere . 207
Lambda Calculus 207
Partial Recursive Functions 210
SKI Combinator Calculus 215
Iota 224
Tag Systems 227
Cyclic Tag Systems 235
Conway’s Game of Life 245

Table of Contents | v

Rule 110 247
Wolfram’s 2,3 Turing Machine 251

8. Impossible Programs . 253
The Facts of Life 254

Universal Systems Can Perform Algorithms 254
Programs Can Stand In for Turing Machines 257
Code Is Data 258
Universal Systems Can Loop Forever 259
Programs Can Refer to Themselves 264

Decidability 269
The Halting Problem 271

Building a Halting Checker 271
It’ll Never Work 274

Other Undecidable Problems 277
Depressing Implications 280
Why Does This Happen? 282
Coping with Uncomputability 283

9. Programming in Toyland . 285
Abstract Interpretation 286

Route Planning 286
Abstraction: Multiplying Signs 287
Safety and Approximation: Adding Signs 290

Static Semantics 295
Implementation 296
Benefits and Limitations 303

Applications 305

Afterword . 307

Index . 309

vi | Table of Contents

CHAPTER 2

The Meaning of Programs

Don’t think, feel! It is like a finger pointing away to the
moon. Don’t concentrate on the finger or you will miss

all that heavenly glory.

—Bruce Lee

Programming languages, and the programs we write in them, are fundamental to our
work as software engineers. We use them to clarify complex ideas to ourselves, com-
municate those ideas to each other, and, most important, implement those ideas inside
our computers. Just as human society couldn’t operate without natural languages, so
the global community of programmers relies on programming languages to transmit
and implement our ideas, with each successful program forming part of a foundation
upon which the next layer of ideas can be built.

Programmers tend to be practical, pragmatic creatures. We often learn a new pro-
gramming language by reading documentation, following tutorials, studying existing
programs, and tinkering with simple programs of our own, without giving much
thought to what those programs mean. Sometimes the learning process feels a lot like
trial and error: we try to understand a piece of a language by looking at examples and
documentation, then we try to write something in it, then everything blows up and we
have to go back and try again until we manage to assemble something that mostly
works. As computers and the systems they support become increasingly complex, it’s
tempting to think of programs as opaque incantations that represent only themselves
and work only by chance.

But computer programming isn’t really about programs, it’s about ideas. A program is
a frozen representation of an idea, a snapshot of a structure that once existed in a
programmer’s imagination. Programs are only worth writing because they have mean-
ing. So what connects code to its meaning, and how can we be more concrete about
the meaning of a program than saying “it just does whatever it does”? In this chapter,
we’re going to look at a few techniques for nailing down the meanings of computer
programs and see how to bring those dead snapshots to life.

17

The Meaning of “Meaning”
In linguistics, semantics is the study of the connection between words and their mean-
ings: the word “dog” is an arrangement of shapes on a page, or a sequence of vibrations
in the air caused by someone’s vocal cords, which are very different things from an
actual dog or the idea of dogs in general. Semantics is concerned with how these con-
crete signifiers relate to their abstract meanings, as well as the fundamental nature of
the abstract meanings themselves.

In computer science, the field of formal semantics is concerned with finding ways of
nailing down the elusive meanings of programs and using them to discover or prove
interesting things about programming languages. Formal semantics has a wide spec-
trum of uses, from concrete applications like specifying new languages and devising
compiler optimizations, to more abstract ones like constructing mathematical proofs
of the correctness of programs.

To completely specify a programming language, we need to provide two things: a
syntax, which describes what programs look like, and a semantics,1 which describes
what programs mean.

Plenty of languages don’t have an official written specification, just a working inter-
preter or compiler. Ruby itself falls into this “specification by implementation” cate-
gory: although there are plenty of books and tutorials about how Ruby is supposed to
work, the ultimate source of all this information is Matz’s Ruby Interpreter (MRI), the
language’s reference implementation. If any piece of Ruby documentation disagrees
with the actual behavior of MRI, it’s the documentation that’s wrong; third-party Ruby
implementations like JRuby, Rubinius, and MacRuby have to work hard to imitate the
exact behavior of MRI so that they can usefully claim to be compatible with the Ruby
language. Other languages like PHP and Perl 5 share this implementation-led approach
to language definition.

Another way of describing a programming language is to write an official prose speci-
fication, usually in English. C++, Java, and ECMAScript (the standardized version of
JavaScript) are examples of this approach: the languages are standardized in imple-
mentation-agnostic documents written by expert committees, and many compatible
implementations of those standards exist. Specifying a language with an official docu-
ment is more rigorous than relying on a reference implementation—design decisions
are more likely to be the result of deliberate, rational choices, rather than accidental
consequences of a particular implementation—but the specifications are often quite
difficult to read, and it can be very hard to tell whether they contain any contradictions,
omissions, or ambiguities. In particular there’s no formal way to reason about an
English-language specification; we just have to read it thoroughly, think about it a lot,
and hope we’ve understood all the consequences.

1. In the context of programming language theory, the word semantics is usually treated as singular: we
describe the meaning of a language by giving it a semantics.

18 | Chapter 2: The Meaning of Programs

A prose specification of Ruby 1.8.7 does exist, and has even been ac-
cepted as an ISO standard (ISO/IEC 30170).2 MRI is still regarded as
the canonical specification-by-implementation of the Ruby language,
although the mruby project is an attempt to build a lightweight, em-
beddable Ruby implementation that explicitly aims for compliance with
the ISO standard rather than MRI compatibility.

A third alternative is to use the mathematical techniques of formal semantics to pre-
cisely describe the meaning of a programming language. The goal here is to be com-
pletely unambiguous, as well as to write the specification in a form that’s suited to
methodical analysis, or even automated analysis, so that it can be comprehensively
checked for consistency, contradiction, or oversight. We’ll look at these formal ap-
proaches to semantic specification after we’ve seen how syntax is handled.

Syntax
A conventional computer program is a long string of characters. Every programming
language comes with a collection of rules that describe what kind of character strings
may be considered valid programs in that language; these rules specify the language’s
syntax.

A language’s syntax rules allow us to distinguish potentially valid programs like y = x
+ 1 from nonsensical ones like >/;x:1@4. They also provide useful information about
how to read ambiguous programs: rules about operator precedence, for example, can
automatically determine that 1 + 2 * 3 should be treated as though it had been written
as 1 + (2 * 3), not as (1 + 2) * 3.

The intended use of a computer program is, of course, to be read by a computer, and
reading programs requires a parser: a program that can read a character string repre-
senting a program, check it against the syntax rules to make sure it’s valid, and turn it
into a structured representation of that program suitable for further processing.

There are a variety of tools that can automatically turn a language’s syntax rules into a
parser. The details of how these rules are specified, and the techniques for turning them
into usable parsers, are not the focus of this chapter—see “Implementing Pars-
ers” on page 58 for a quick overview—but overall, a parser should read a string like
y = x + 1 and turn it into an abstract syntax tree (AST), a representation of the source
code that discards incidental detail like whitespace and focuses on the hierarchical
structure of the program.

2. Although access to ISO/IEC 30170 costs money, an earlier draft of the same specification
can be downloaded for free from http://www.ipa.go.jp/osc/english/ruby/.

Syntax | 19

In the end, syntax is only concerned with the surface appearance of programs, not with
their meanings. It’s possible for a program to be syntactically valid but not mean any-
thing useful; for example, it might be that the program y = x + 1 doesn‘t make sense
on its own because it doesn’t say what x is beforehand, and the program z = true +
1 might turn out to be broken when we run it because it’s trying to add a number to a
Boolean value. (This depends, of course, on other properties of whichever program-
ming language we’re talking about.)

As we might expect, there is no “one true way” of explaining how the syntax of a
programming language corresponds to an underlying meaning. In fact there are several
different ways of talking concretely about what programs mean, all with different trade-
offs between formality, abstraction, expressiveness, and practical efficiency. In the next
few sections, we’ll look at the main formal approaches and see how they relate to each
other.

Operational Semantics
The most practical way to think about the meaning of a program is what it does—when
we run the program, what do we expect to happen? How do different constructs in the
programming language behave at run time, and what effect do they have when they’re
plugged together to make larger programs?

This is the basis of operational semantics, a way of capturing the meaning of a pro-
gramming language by defining rules for how its programs execute on some kind of
device. This device is often an abstract machine: an imaginary, idealized computer that
is designed for the specific purpose of explaining how the language’s programs will
execute. Different kinds of programming language will usually require different designs
of abstract machine in order to neatly capture their runtime behavior.

By giving an operational semantics, we can be quite rigorous and precise about the
purpose of particular constructs in the language. Unlike a language specification writ-
ten in English, which might contain hidden ambiguities and leave important edge cases
uncovered, a formal operational specification will need to be explicit and unambiguous
in order to convincingly communicate the language’s behavior.

20 | Chapter 2: The Meaning of Programs

Small-Step Semantics
So, how can we design an abstract machine and use it to specify the operational se-
mantics of a programming language? One way is to imagine a machine that evaluates
a program by operating on its syntax directly, repeatedly reducing it in small steps, with
each step bringing the program closer to its final result, whatever that turns out to mean.

These small-step reductions are similar to the way we are taught in school to evaluate
algebraic expressions. For example, to evaluate (1 × 2) + (3 × 4), we know we should:

1. Perform the left-hand multiplication (1 × 2 becomes 2) and reduce the expression
to 2 + (3 × 4)

2. Perform the right-hand multiplication (3 × 4 becomes 12) and reduce the expres-
sion to 2 + 12

3. Perform the addition (2 + 12 becomes 14) and end up with 14

We can think of 14 as the result because it can’t be reduced any further by this process
—we recognize 14 as a special kind of algebraic expression, a value, which has its own
meaning and doesn’t require any more work on our part.

This informal process can be turned into an operational semantics by writing down
formal rules about how to proceed with each small reduction step. These rules them-
selves need to be written in some language (the metalanguage), which is usually math-
ematical notation.

In this chapter, we’re going to explore the semantics of a toy programming language
—let’s call it SIMPLE.3

3. This can be an abbreviation for simple imperative language if you want it to be.

Operational Semantics | 21

The mathematical description of SIMPLE’s small-step semantics looks like this:

Mathematically speaking, this is a set of inference rules that defines a reduction rela-
tion on SIMPLE’s abstract syntax trees. Practically speaking, it’s a bunch of weird symbols
that don’t say anything intelligible about the meaning of computer programs.

Instead of trying to understand this formal notation directly, we’re going to investigate
how to write the same inference rules in Ruby. Using Ruby as the metalanguage is easier
for a programmer to understand, and it gives us the added advantage of being able to
execute the rules to see how they work.

22 | Chapter 2: The Meaning of Programs

We are not trying to describe the semantics of SIMPLE by giving a “spec-
ification by implementation.” Our main reason for describing the small-
step semantics in Ruby instead of mathematical notation is to make the
description easier for a human reader to digest. Ending up with an ex-
ecutable implementation of the language is just a nice bonus.

The big disadvantage of using Ruby is that it explains a simple language
by using a more complicated one, which perhaps defeats the philo-
sophical purpose. We should remember that the mathematical rules are
the authoritative description of the semantics, and that we’re just using
Ruby to develop an understanding of what those rules mean.

Expressions

We’ll start by looking at the semantics of SIMPLE expressions. The rules will operate on
the abstract syntax of these expressions, so we need to be able to represent SIMPLE

expressions as Ruby objects. One way of doing this is to define a Ruby class for each
distinct kind of element from SIMPLE’s syntax—numbers, addition, multiplication, and
so on—and then represent each expression as a tree of instances of these classes.

For example, here are the definitions of Number, Add, and Multiply classes:

class Number < Struct.new(:value)
end

class Add < Struct.new(:left, :right)
end

class Multiply < Struct.new(:left, :right)
end

We can instantiate these classes to build abstract syntax trees by hand:

>> Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> #<struct Add
 left=#<struct Multiply
 left=#<struct Number value=1>,
 right=#<struct Number value=2>
 >,
 right=#<struct Multiply
 left=#<struct Number value=3>,
 right=#<struct Number value=4>
 >
 >

Eventually, of course, we want these trees to be built automatically by
a parser. We’ll see how to do that in “Implementing Pars-
ers” on page 58.

Operational Semantics | 23

The Number, Add, and Multiply classes inherit Struct’s generic definition of #inspect, so
the string representations of their instances in the IRB console contain a lot of unim-
portant detail. To make the content of an abstract syntax tree easier to see in IRB, we’ll
override #inspect on each class4 so that it returns a custom string representation:

class Number
 def to_s
 value.to_s
 end

 def inspect
 "«#{self}»"
 end
end

class Add
 def to_s
 "#{left} + #{right}"
 end

 def inspect
 "«#{self}»"
 end
end

class Multiply
 def to_s
 "#{left} * #{right}"
 end

 def inspect
 "«#{self}»"
 end
end

Now each abstract syntax tree will be shown in IRB as a short string of SIMPLE source
code, surrounded by «guillemets» to distinguish it from a normal Ruby value:

>> Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> «1 * 2 + 3 * 4»
>> Number.new(5)
=> «5»

4. For the sake of simplicity, we’ll resist the urge to extract common code into superclasses or modules.

24 | Chapter 2: The Meaning of Programs

Our rudimentary #to_s implementations don’t take operator prece-
dence into account, so sometimes their output is incorrect with respect
to conventional precedence rules (e.g., * usually binds more tightly than
+). Take this abstract syntax tree, for example:

>> Multiply.new(
 Number.new(1),
 Multiply.new(
 Add.new(Number.new(2), Number.new(3)),
 Number.new(4)
)
)
=> «1 * 2 + 3 * 4»

This tree represents «1 * (2 + 3) * 4», which is a different expression
(with a different meaning) than «1 * 2 + 3 * 4», but its string repre-
sentation doesn’t reflect that.

This problem is serious but tangential to our discussion of semantics.
To keep things simple, we’ll temporarily ignore it and just avoid creating
expressions that have an incorrect string representation. We’ll imple-
ment a proper solution for another language in “Syntax” on page 80.

Now we can begin to implement a small-step operational semantics by defining meth-
ods that perform reductions on our abstract syntax trees—that is, code that can take
an abstract syntax tree as input and produce a slightly reduced tree as output.

Before we can implement reduction itself, we need to be able to distinguish expressions
that can be reduced from those that can’t. Add and Multiply expressions are always
reducible—each of them represents an operation, and can be turned into a result by
performing the calculation corresponding to that operation—but a Number expression
always represents a value, which can’t be reduced to anything else.

In principle, we could tell these two kinds of expression apart with a single #reduci
ble? predicate that returns true or false depending on the class of its argument:

def reducible?(expression)
 case expression
 when Number
 false
 when Add, Multiply
 true
 end
end

In Ruby case statements, the control expression is matched against the
cases by calling each case value’s #=== method with the control expres-
sion’s value as an argument. The implementation of #=== for class ob-
jects checks to see whether its argument is an instance of that class or
one of its subclasses, so we can use the case object when classname
syntax to match an object against a class.

Operational Semantics | 25

However, it’s generally considered bad form to write code like this in an object-oriented
language;5 when the behavior of some operation depends upon the class of its argu-
ment, the typical approach is to implement each per-class behavior as an instance
method for that class, and let the language implicitly handle the job of deciding which
of those methods to call instead of using an explicit case statement.

So instead, let’s implement separate #reducible? methods for Number, Add, and Multiply:

class Number
 def reducible?
 false
 end
end

class Add
 def reducible?
 true
 end
end

class Multiply
 def reducible?
 true
 end
end

This gives us the behavior we want:

>> Number.new(1).reducible?
=> false
>> Add.new(Number.new(1), Number.new(2)).reducible?
=> true

We can now implement reduction for these expressions; as above, we’ll do this by
defining a #reduce method for Add and Multiply. There’s no need to define Num
ber#reduce, since numbers can’t be reduced, so we’ll just need to be careful not to call
#reduce on an expression unless we know it’s reducible.

So what are the rules for reducing an addition expression? If the left and right arguments
are already numbers, then we can just add them together, but what if one or both of
the arguments needs reducing? Since we’re thinking about small steps, we need to
decide which argument gets reduced first if they are both eligible for reduction.6 A
common strategy is to reduce the arguments in left-to-right order, in which case the
rules will be:

• If the addition’s left argument can be reduced, reduce the left argument.

5. Although this is pretty much exactly how we’d write #reducible? in a functional language like Haskell or
ML.

6. At the moment, it doesn’t make any difference which order we choose, but we can’t avoid making the
decision.

26 | Chapter 2: The Meaning of Programs

• If the addition’s left argument can’t be reduced but its right argument can, reduce
the right argument.

• If neither argument can be reduced, they should both be numbers, so add them
together.

The structure of these rules is characteristic of small-step operational semantics. Each
rule provides a pattern for the kind of expression to which it applies—an addition with
a reducible left argument, with a reducible right argument, and with two irreducible
arguments respectively—and a description of how to build a new, reduced expression
when that pattern matches. By choosing these particular rules, we’re specifying that a
SIMPLE addition expression uses left-to-right evaluation to reduce its arguments, as well
as deciding how those arguments should be combined once they’ve been individually
reduced.

We can translate these rules directly into an implementation of Add#reduce, and almost
the same code will work for Multiply#reduce (remembering to multiply the arguments
instead of adding them):

class Add
 def reduce
 if left.reducible?
 Add.new(left.reduce, right)
 elsif right.reducible?
 Add.new(left, right.reduce)
 else
 Number.new(left.value + right.value)
 end
 end
end

class Multiply
 def reduce
 if left.reducible?
 Multiply.new(left.reduce, right)
 elsif right.reducible?
 Multiply.new(left, right.reduce)
 else
 Number.new(left.value * right.value)
 end
 end
end

#reduce always builds a new expression rather than modifying an exist-
ing one.

Having implemented #reduce for these kinds of expressions, we can call it repeatedly
to fully evaluate an expression via a series of small steps:

Operational Semantics | 27

>> expression =
 Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
=> «1 * 2 + 3 * 4»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «2 + 3 * 4»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «2 + 12»
>> expression.reducible?
=> true
>> expression = expression.reduce
=> «14»
>> expression.reducible?
=> false

Notice that #reduce always turns one expression into another expres-
sion, which is exactly how the rules of small-step operational semantics
should work. In particular, Add.new(Number.new(2), Num
ber.new(12)).reduce returns Number.new(14), which represents a SIM-

PLE expression, rather than just 14, which is a Ruby number.

This separation between the SIMPLE language, whose semantics we are
specifying, and the Ruby metalanguage, in which we are writing the
specification, is easier to maintain when the two languages are obviously
different—as is the case when the metalanguage is mathematical nota-
tion rather than a programming language—but here we need to be more
careful because the two languages look very similar.

By maintaining a piece of state—the current expression—and repeatedly calling
#reducible? and #reduce on it until we end up with a value, we’re manually simulating
the operation of an abstract machine for evaluating expressions. To save ourselves some
effort, and to make the idea of the abstract machine more concrete, we can easily write
some Ruby code that does the work for us. Let’s wrap up that code and state together
in a class and call it a virtual machine:

class Machine < Struct.new(:expression)
 def step
 self.expression = expression.reduce
 end

 def run
 while expression.reducible?
 puts expression
 step
 end

28 | Chapter 2: The Meaning of Programs

 puts expression
 end
end

This allows us to instantiate a virtual machine with an expression, tell it to #run, and
watch the steps of reduction unfold:

>> Machine.new(
 Add.new(
 Multiply.new(Number.new(1), Number.new(2)),
 Multiply.new(Number.new(3), Number.new(4))
)
).run
1 * 2 + 3 * 4
2 + 3 * 4
2 + 12
14
=> nil

It isn’t difficult to extend this implementation to support other simple values and op-
erations: subtraction and division; Boolean true and false; Boolean and, or, and not;
comparison operations for numbers that return Booleans; and so on. For example, here
are implementations of Booleans and the less-than operator:

class Boolean < Struct.new(:value)
 def to_s
 value.to_s
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 false
 end
end

class LessThan < Struct.new(:left, :right)
 def to_s
 "#{left} < #{right}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce
 if left.reducible?
 LessThan.new(left.reduce, right)
 elsif right.reducible?

Operational Semantics | 29

 LessThan.new(left, right.reduce)
 else
 Boolean.new(left.value < right.value)
 end
 end
end

Again, this allows us to reduce a boolean expression in small steps:

>> Machine.new(
 LessThan.new(Number.new(5), Add.new(Number.new(2), Number.new(2)))
).run
5 < 2 + 2
5 < 4
false
=> nil

So far, so straightforward: we have begun to specify the operational semantics of a
language by implementing a virtual machine that can evaluate it. At the moment the
state of this virtual machine is just the current expression, and the behavior of the
machine is described by a collection of rules that govern how that state changes when
the machine runs. We’ve implemented the machine as a program that keeps track of
the current expression and keeps reducing it, updating the expression as it goes, until
no more reductions can be performed.

But this language of simple algebraic expressions isn’t very interesting, and doesn’t have
many of the features that we expect from even the simplest programming language, so
let’s build it out to be more sophisticated and look more like a language in which we
could write useful programs.

First off, there’s something obviously missing from SIMPLE: variables. In any useful lan-
guage, we’d expect to be able to talk about values using meaningful names rather than
the literal values themselves. These names provide a layer of indirection so that the
same code can be used to process many different values, including values that come
from outside the program and therefore aren’t even known when the code is written.

We can introduce a new class of expression, Variable, to represent variables in SIMPLE:

class Variable < Struct.new(:name)
 def to_s
 name.to_s
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end
end

30 | Chapter 2: The Meaning of Programs

To be able to reduce a variable, we need the abstract machine to store a mapping from
variable names onto their values, an environment, as well as the current expression. In
Ruby, we can implement this mapping as a hash, using symbols as keys and expression
objects as values; for example, the hash { x: Number.new(2), y:
Boolean.new(false) } is an environment that associates the variables x and y with a
SIMPLE number and Boolean, respectively.

For this language, the intention is for the environment to only map vari-
able names onto irreducible values like Number.new(2), not onto reduci-
ble expressions like Add.new(Number.new(1), Number.new(2)). We’ll take
care to respect this constraint later when we write rules that change the
contents of the environment.

Given an environment, we can easily implement Variable#reduce: it just looks up the
variable’s name in the environment and returns its value.

class Variable
 def reduce(environment)
 environment[name]
 end
end

Notice that we’re now passing an environment argument into #reduce, so we’ll need to
revise the other expression classes’ implementations of #reduce to both accept and
provide this argument:

class Add
 def reduce(environment)
 if left.reducible?
 Add.new(left.reduce(environment), right)
 elsif right.reducible?
 Add.new(left, right.reduce(environment))
 else
 Number.new(left.value + right.value)
 end
 end
end

class Multiply
 def reduce(environment)
 if left.reducible?
 Multiply.new(left.reduce(environment), right)
 elsif right.reducible?
 Multiply.new(left, right.reduce(environment))
 else
 Number.new(left.value * right.value)
 end
 end
end

class LessThan

Operational Semantics | 31

 def reduce(environment)
 if left.reducible?
 LessThan.new(left.reduce(environment), right)
 elsif right.reducible?
 LessThan.new(left, right.reduce(environment))
 else
 Boolean.new(left.value < right.value)
 end
 end
end

Once all the implementations of #reduce have been updated to support environments,
we also need to redefine our virtual machine to maintain an environment and provide
it to #reduce:

Object.send(:remove_const, :Machine) # forget about the old Machine class

class Machine < Struct.new(:expression, :environment)
 def step
 self.expression = expression.reduce(environment)
 end

 def run
 while expression.reducible?
 puts expression
 step
 end

 puts expression
 end
end

The machine’s definition of #run remains unchanged, but it has a new environment
attribute that is used by its new implementation of #step.

We can now perform reductions on expressions that contain variables, as long as we
also supply an environment that contains the variables’ values:

>> Machine.new(
 Add.new(Variable.new(:x), Variable.new(:y)),
 { x: Number.new(3), y: Number.new(4) }
).run
x + y
3 + y
3 + 4
7
=> nil

The introduction of an environment completes our operational semantics of expres-
sions. We’ve designed an abstract machine that begins with an initial expression and
environment, and then uses the current expression and environment to produce a new
expression in each small reduction step, leaving the environment unchanged.

32 | Chapter 2: The Meaning of Programs

Statements

We can now look at implementing a different kind of program construct: statements.
The purpose of an expression is to be evaluated to produce another expression; a state-
ment, on the other hand, is evaluated to make some change to the state of the abstract
machine. Our machine’s only piece of state (aside from the current program) is the
environment, so we’ll allow SIMPLE statements to produce a new environment that can
replace the current one.

The simplest possible statement is one that does nothing: it can’t be reduced, so it can’t
have any effect on the environment. That’s easy to implement:

class DoNothing
 def to_s
 'do-nothing'
 end

 def inspect
 "«#{self}»"
 end

 def ==(other_statement)
 other_statement.instance_of?(DoNothing)
 end

 def reducible?
 false
 end
end

All of our other syntax classes inherit from a Struct class, but DoNothing doesn’t
inherit from anything. This is because DoNothing doesn’t have any attributes, and
unfortunately, Struct.new doesn’t let us pass an empty list of attribute names.

We want to be able to compare any two statements to see if they’re equal. The other
syntax classes inherit an implementation of #== from Struct, but DoNothing has to
define its own.

A statement that does nothing might seem pointless, but it’s convenient to have a spe-
cial statement that represents a program whose execution has completed successfully.
We’ll arrange for other statements to eventually reduce to «do-nothing» once they’ve
finished doing their work.

The simplest example of a statement that actually does something useful is an assign-
ment like «x = x + 1», but before we can implement assignment, we need to decide
what its reduction rules should be.

An assignment statement consists of a variable name (x), an equals symbol, and an
expression («x + 1»). If the expression within the assignment is reducible, we can just
reduce it according to the expression reduction rules and end up with a new assignment
statement containing the reduced expression. For example, reducing «x = x + 1» in an

Operational Semantics | 33

environment where the variable x has the value «2» should leave us with the statement
«x = 2 + 1», and reducing it again should produce «x = 3».

But then what? If the expression is already a value like «3», then we should just perform
the assignment, which means updating the environment to associate that value with
the appropriate variable name. So reducing a statement needs to produce not just a
new, reduced statement but also a new environment, which will sometimes be different
from the environment in which the reduction was performed.

Our implementation will update the environment by using Hash#merge
to create a new hash without modifying the old one:

>> old_environment = { y: Number.new(5) }
=> {:y=>«5»}
>> new_environment = old_environment.merge({ x: Number.new(3) })
=> {:y=>«5», :x=>«3»}
>> old_environment
=> {:y=>«5»}

We could choose to destructively modify the current environment in-
stead of making a new one, but avoiding destructive updates forces us
to make the consequences of #reduce completely explicit. If #reduce
wants to change the current environment, it has to communicate that
by returning an updated environment to its caller; conversely, if it
doesn’t return an environment, we can be sure it hasn’t made any
changes.

This constraint helps to highlight the difference between expressions
and statements. For expressions, we pass an environment into #reduce
and get a reduced expression back; no new environment is returned, so
reducing an expression obviously doesn’t change the environment. For
statements, we’ll call #reduce with the current environment and get a
new environment back, which tells us that reducing a statement can
have an effect on the environment. (In other words, the structure of
SIMPLE’s small-step semantics shows that its expressions are pure and its
statements are impure.)

So reducing «x = 3» in an empty environment should produce the new environment
{ x: Number.new(3) }, but we also expect the statement to be reduced somehow;
otherwise, our abstract machine will keep assigning «3» to x forever. That’s what «do-
nothing» is for: a completed assignment reduces to «do-nothing», indicating that re-
duction of the statement has finished and that whatever’s in the new environment may
be considered its result.

To summarize, the reduction rules for assignment are:

• If the assignment’s expression can be reduced, then reduce it, resulting in a reduced
assignment statement and an unchanged environment.

34 | Chapter 2: The Meaning of Programs

• If the assignment’s expression can’t be reduced, then update the environment to
associate that expression with the assignment’s variable, resulting in a «do-noth
ing» statement and a new environment.

This gives us enough information to implement an Assign class. The only difficulty is
that Assign#reduce needs to return both a statement and an environment—Ruby
methods can only return a single object—but we can pretend to return two objects by
putting them into a two-element array and returning that.

class Assign < Struct.new(:name, :expression)
 def to_s
 "#{name} = #{expression}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 if expression.reducible?
 [Assign.new(name, expression.reduce(environment)), environment]
 else
 [DoNothing.new, environment.merge({ name => expression })]
 end
 end
end

As promised, the reduction rules for Assign ensure that an expression
only gets added to the environment if it’s irreducible (i.e., a value).

As with expressions, we can manually evaluate an assignment statement by repeatedly
reducing it until it can’t be reduced any more:

>> statement = Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
=> «x = x + 1»
>> environment = { x: Number.new(2) }
=> {:x=>«2»}
>> statement.reducible?
=> true
>> statement, environment = statement.reduce(environment)
=> [«x = 2 + 1», {:x=>«2»}]
>> statement, environment = statement.reduce(environment)
=> [«x = 3», {:x=>«2»}]
>> statement, environment = statement.reduce(environment)
=> [«do-nothing», {:x=>«3»}]
>> statement.reducible?
=> false

Operational Semantics | 35

This process is even more laborious than manually reducing expressions, so let’s re-
implement our virtual machine to handle statements, showing the current statement
and environment at each reduction step:

Object.send(:remove_const, :Machine)

class Machine < Struct.new(:statement, :environment)
 def step
 self.statement, self.environment = statement.reduce(environment)
 end

 def run
 while statement.reducible?
 puts "#{statement}, #{environment}"
 step
 end

 puts "#{statement}, #{environment}"
 end
end

Now the machine can do the work for us again:

>> Machine.new(
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(1))),
 { x: Number.new(2) }
).run
x = x + 1, {:x=>«2»}
x = 2 + 1, {:x=>«2»}
x = 3, {:x=>«2»}
do-nothing, {:x=>«3»}
=> nil

We can see that the machine is still performing expression reduction steps («x + 1» to
«2 + 1» to «3»), but they now happen inside a statement instead of at the top level of
the syntax tree.

Now that we know how statement reduction works, we can extend it to support other
kinds of statements. Let’s begin with conditional statements like «if (x) { y = 1 }
else { y = 2 }», which contain an expression called the condition («x»), and two
statements that we’ll call the consequence («y = 1») and the alternative («y = 2»).7 The
reduction rules for conditionals are straightforward:

• If the condition can be reduced, then reduce it, resulting in a reduced conditional
statement and an unchanged environment.

• If the condition is the expression «true», reduce to the consequence statement and
an unchanged environment.

7. This conditional is not the same as Ruby’s if. In Ruby, if is an expression that returns a value, but in
SIMPLE, it’s a statement for choosing which of two other statements to evaluate, and its only result is the
effect it has on the current environment.

36 | Chapter 2: The Meaning of Programs

• If the condition is the expression «false», reduce to the alternative statement and
an unchanged environment.

In this case, none of the rules changes the environment—the reduction of the condition
expression in the first rule will only produce a new expression, not a new environment.

Here are the rules translated into an If class:

class If < Struct.new(:condition, :consequence, :alternative)
 def to_s
 "if (#{condition}) { #{consequence} } else { #{alternative} }"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 if condition.reducible?
 [If.new(condition.reduce(environment), consequence, alternative), environment]
 else
 case condition
 when Boolean.new(true)
 [consequence, environment]
 when Boolean.new(false)
 [alternative, environment]
 end
 end
 end
end

And here’s how the reduction steps look:

>> Machine.new(
 If.new(
 Variable.new(:x),
 Assign.new(:y, Number.new(1)),
 Assign.new(:y, Number.new(2))
),
 { x: Boolean.new(true) }
).run
if (x) { y = 1 } else { y = 2 }, {:x=>«true»}
if (true) { y = 1 } else { y = 2 }, {:x=>«true»}
y = 1, {:x=>«true»}
do-nothing, {:x=>«true», :y=>«1»}
=> nil

That all works as expected, but it would be nice if we could support conditional state-
ments with no «else» clause, like «if (x) { y = 1 }». Fortunately, we can already do
that by writing statements like «if (x) { y = 1 } else { do-nothing }», which behave
as though the «else» clause wasn’t there:

Operational Semantics | 37

>> Machine.new(
 If.new(Variable.new(:x), Assign.new(:y, Number.new(1)), DoNothing.new),
 { x: Boolean.new(false) }
).run
if (x) { y = 1 } else { do-nothing }, {:x=>«false»}
if (false) { y = 1 } else { do-nothing }, {:x=>«false»}
do-nothing, {:x=>«false»}
=> nil

Now that we’ve implemented assignment and conditional statements as well as ex-
pressions, we have the building blocks for programs that can do real work by perform-
ing calculations and making decisions. The main restriction is that we can’t yet connect
these blocks together: we have no way to assign values to more than one variable, or
to perform more than one conditional operation, which drastically limits the usefulness
of our language.

We can fix this by defining another kind of statement, the sequence, which connects
two statements like «x = 1 + 1» and «y = x + 3» to make one larger statement like «x
= 1 + 1; y = x + 3». Once we have sequence statements, we can use them repeatedly
to build even larger statements; for example, the sequence «x = 1 + 1; y = x + 3» and
the assignment «z = y + 5» can be combined to make the sequence «x = 1 + 1; y =
x + 3; z = y + 5».8

The reduction rules for sequences are slightly subtle:

• If the first statement is a «do-nothing» statement, reduce to the second statement
and the original environment.

• If the first statement is not «do-nothing», then reduce it, resulting in a new sequence
(the reduced first statement followed by the second statement) and a reduced en-
vironment.

Seeing the code may make these rules clearer:

class Sequence < Struct.new(:first, :second)
 def to_s
 "#{first}; #{second}"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 case first

8. For our purposes, it doesn’t matter whether this statement has been constructed as «(x = 1 + 1; y = x
+ 3); z = y + 5» or «x = 1 + 1; (y = x + 3; z = y + 5)». This choice would affect the exact order of
the reduction steps when we ran it, but the final result would be the same either way.

38 | Chapter 2: The Meaning of Programs

 when DoNothing.new
 [second, environment]
 else
 reduced_first, reduced_environment = first.reduce(environment)
 [Sequence.new(reduced_first, second), reduced_environment]
 end
 end
end

The overall effect of these rules is that, when we repeatedly reduce a sequence, it keeps
reducing its first statement until it turns into «do-nothing», then reduces to its second
statement. We can see this happening when we run a sequence in the virtual machine:

>> Machine.new(
 Sequence.new(
 Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
 Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
),
 {}
).run
x = 1 + 1; y = x + 3, {}
x = 2; y = x + 3, {}
do-nothing; y = x + 3, {:x=>«2»}
y = x + 3, {:x=>«2»}
y = 2 + 3, {:x=>«2»}
y = 5, {:x=>«2»}
do-nothing, {:x=>«2», :y=>«5»}
=> nil

The only really major thing still missing from SIMPLE is some kind of unrestricted looping
construct, so to finish off, let’s introduce a «while» statement so that programs can
perform repeated calculations an arbitrary number of times.9 A statement like «while
(x < 5) { x = x * 3 }» contains an expression called the condition («x < 5») and a
statement called the body («x = x * 3»).

Writing the correct reduction rules for a «while» statement is slightly tricky. We could
try treating it like an «if» statement: reduce the condition if possible; otherwise, reduce
to either the body or «do-nothing», depending on whether the condition is «true» or
«false», respectively. But once the abstract machine has completely reduced the body,
what next? The condition has been reduced to a value and thrown away, and the body
has been reduced to «do-nothing», so how do we perform another iteration of the loop?
Each reduction step can only communicate with future steps by producing a new state-
ment and environment, and this approach doesn’t give us anywhere to “remember”
the original condition and body for use on the next iteration.

The small-step solution10 is to use the sequence statement to unroll one level of the
«while», reducing it to an «if» that performs a single iteration of the loop and then
repeats the original «while». This means we only need one reduction rule:

9. We can already hardcode a fixed number of repetitions by using sequence statements, but that doesn’t
allow us to control the repetition behavior at runtime.

Operational Semantics | 39

• Reduce «while (condition) { body }» to «if (condition) { body; while (condi
tion) { body } } else { do-nothing }» and an unchanged environment.

And this rule is easy to implement in Ruby:

class While < Struct.new(:condition, :body)
 def to_s
 "while (#{condition}) { #{body} }"
 end

 def inspect
 "«#{self}»"
 end

 def reducible?
 true
 end

 def reduce(environment)
 [If.new(condition, Sequence.new(body, self), DoNothing.new), environment]
 end
end

This gives the virtual machine the opportunity to evaluate the condition and body as
many times as necessary:

>> Machine.new(
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
),
 { x: Number.new(1) }
).run
while (x < 5) { x = x * 3 }, {:x=>«1»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
if (1 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«1»}
x = x * 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
x = 1 * 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
x = 3; while (x < 5) { x = x * 3 }, {:x=>«1»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«3»}
while (x < 5) { x = x * 3 }, {:x=>«3»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
if (3 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
x = x * 3; while (x < 5) { x = x * 3 }, {:x=>«3»}
x = 3 * 3; while (x < 5) { x = x * 3 }, {:x=>«3»}
x = 9; while (x < 5) { x = x * 3 }, {:x=>«3»}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«9»}
while (x < 5) { x = x * 3 }, {:x=>«9»}
if (x < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}

10. There’s a temptation to build the iterative behavior of «while» directly into its reduction rule instead of
finding a way to get the abstract machine to handle it, but that’s not how small-step semantics works.
See “Big-Step Semantics” on page 42 for a style of semantics that lets the rules do the work.

40 | Chapter 2: The Meaning of Programs

if (9 < 5) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}
if (false) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«9»}
do-nothing, {:x=>«9»}
=> nil

Perhaps this reduction rule seems like a bit of a dodge—it’s almost as though we’re
perpetually postponing reduction of the «while» until later, without ever actually get-
ting there—but on the other hand, it does a good job of explaining what we really mean
by a «while» statement: check the condition, evaluate the body, then start again. It’s
curious that reducing «while» turns it into a syntactically larger program involving
conditional and sequence statements instead of directly reducing its condition or body,
and one reason why it’s useful to have a technical framework for specifying the formal
semantics of a language is to help us see how different parts of the language relate to
each other like this.

Correctness

We’ve completely ignored what will happen when a syntactically valid but otherwise
incorrect program is executed according to the semantics we’ve given. The statement
«x = true; x = x + 1» is a valid piece of SIMPLE syntax—we can certainly construct an
abstract syntax tree to represent it—but it’ll blow up when we try to repeatedly reduce
it, because the abstract machine will end up trying to add «1» to «true»:

>> Machine.new(
 Sequence.new(
 Assign.new(:x, Boolean.new(true)),
 Assign.new(:x, Add.new(Variable.new(:x), Number.new(1)))
),
 {}
).run
x = true; x = x + 1, {}
do-nothing; x = x + 1, {:x=>«true»}
x = x + 1, {:x=>«true»}
x = true + 1, {:x=>«true»}
NoMethodError: undefined method `+' for true:TrueClass

One way to handle this is to be more restrictive about when expressions can be reduced,
which introduces the possibility that evaluation will get stuck rather than always trying
to reduce to a value (and potentially blowing up in the process). We could have im-
plemented Add#reducible? to only return true when both arguments to «+» are either
reducible or an instance of Number, in which case the expression «true + 1» would get
stuck and never turn into a value.

Ultimately, we need a more powerful tool than syntax, something that can “see the
future” and prevent us from trying to execute any program that has the potential to
blow up or get stuck. This chapter is about dynamic semantics—what a program does
when it’s executed—but that’s not the only kind of meaning that a program can have;
in Chapter 9, we’ll investigate static semantics to see how we can decide whether a

Operational Semantics | 41

syntactically valid program has a useful meaning according to the language’s dynamic
semantics.

Applications

The programming language we’ve specified is very basic, but in writing down all the
reduction rules, we’ve still had to make some design decisions and express them un-
ambiguously. For example, unlike Ruby, SIMPLE is a language that makes a distinction
between expressions, which return a value, and statements, which don’t; like Ruby,
SIMPLE evaluates expressions in a left-to-right order; and like Ruby, SIMPLE’s environ-
ments associate variables only with fully reduced values, not with larger expressions
that still have some unfinished computation to perform.11 We could change any of
these decisions by giving a different small-step semantics which would describe a new
language with the same syntax but different runtime behavior. If we added more elab-
orate features to the language—data structures, procedure calls, exceptions, an object
system—we’d need to make many more design decisions and express them unambig-
uously in the semantic definition.

The detailed, execution-oriented style of small-step semantics lends itself well to the
task of unambiguously specifying real-world programming languages. For example,
the latest R6RS standard for the Scheme programming language uses small-step se-
mantics to describe its execution, and provides a reference implementation of those
semantics written in PLT Redex, “a domain-specific language designed for specifying
and debugging operational semantics.” The OCaml programming language, which is
built as a series of layers on top of a simpler language called Core ML, also has a small-
step semantic definition of the base language’s runtime behavior.

See “Semantics” on page 199 for another example of using small-step operational se-
mantics to specify the meaning of expressions in an even simpler programming lan-
guage called the lambda calculus.

Big-Step Semantics
We’ve now seen what small-step operational semantics looks like: we design an abstract
machine that maintains some execution state, then define reduction rules that specify
how each kind of program construct can make incremental progress toward being fully
evaluated. In particular, small-step semantics has a mostly iterative flavor, requiring
the abstract machine to repeatedly perform reduction steps (the Ruby while loop in
Machine#run) that are themselves constructed to produce as output the same kind of
information that they require as input, making them suitable for this kind of repeated
application.12

11. Ruby’s procs permit complex expressions to be assigned to variables in some sense, but a proc is still a
value: it can’t perform any more evaluation by itself, but can be reduced as part of a larger expression
involving other values.

42 | Chapter 2: The Meaning of Programs

The small-step approach has the advantage of slicing up the complex business of exe-
cuting an entire program into smaller pieces that are easier to explain and analyze, but
it does feel a bit indirect: instead of explaining how a whole program construct works,
we just show how it can be reduced slightly. Why can’t we explain a statement more
directly, by telling a complete story about how its execution works? Well, we can, and
that’s the basis of big-step semantics.

The idea of big-step semantics is to specify how to get from an expression or statement
straight to its result. This necessarily involves thinking about program execution as a
recursive rather than an iterative process: big-step semantics says that, to evaluate a
large expression, we evaluate all of its smaller subexpressions and then combine their
results to get our final answer.

In many ways, this feels more natural than the small-step approach, but it does lack
some of its fine-grained attention to detail. For example, our small-step semantics is
explicit about the order in which operations are supposed to happen, because at every
point, it identifies what the next step of reduction should be, but big-step semantics is
often written in a looser style that just says which subcomputations to perform without
necessarily specifying what order to perform them in.13 Small-step semantics also gives
us an easy way to observe the intermediate stages of a computation, whereas big-step
semantics just returns a result and doesn’t produce any direct evidence of how it was
computed.

To understand this trade-off, let’s revisit some common language constructs and see
how to implement their big-step semantics in Ruby. Our small-step semantics required
a Machine class to keep track of state and perform repeated reductions, but we won’t
need that here; big-step rules describe how to compute the result of an entire program
by walking over its abstract syntax tree in a single attempt, so there’s no state or repe-
tition to deal with. We’ll just define an #evaluate method on our expression and state-
ment classes and call it directly.

Expressions

With small-step semantics we had to distinguish reducible expressions like «1 + 2»
from irreducible expressions like «3» so that the reduction rules could tell when a sub-
expression was ready to be used as part of some larger computation, but in big-step
semantics every expression can be evaluated. The only distinction, if we wanted to
make one, is that some expressions immediately evaluate to themselves, while others
perform some computation and evaluate to a different expression.

12. Reducing an expression and an environment gives us a new expression, and we may reuse the old
environment next time; reducing a statement and an environment gives us a new statement and a new
environment.

13. Our Ruby implementation of big-step semantics won’t be ambiguous in this way, because Ruby itself
already makes these ordering decisions, but when a big-step semantics is specified mathematically, it can
avoid spelling out the exact evaluation strategy.

Operational Semantics | 43

The goal of big-step semantics is to model the same runtime behavior as the small-step
semantics, which means we expect the big-step rules for each kind of program construct
to agree with what repeated application of the small-step rules would eventually pro-
duce. (This is exactly the sort of thing that can be formally proved when an operational
semantics is written mathematically.) The small-step rules for values like Number and
Boolean say that we can’t reduce them at all, so their big-step rules are very simple:
values immediately evaluate to themselves.

class Number
 def evaluate(environment)
 self
 end
end

class Boolean
 def evaluate(environment)
 self
 end
end

Variable expressions are unique in that their small-step semantics allow them to be
reduced exactly once before they turn into a value, so their big-step rule is the same as
their small-step one: look up the variable name in the environment and return its value.

class Variable
 def evaluate(environment)
 environment[name]
 end
end

The binary expressions Add, Multiply, and LessThan are slightly more interesting, re-
quiring recursive evaluation of their left and right subexpressions before combining
both values with the appropriate Ruby operator:

class Add
 def evaluate(environment)
 Number.new(left.evaluate(environment).value + right.evaluate(environment).value)
 end
end

class Multiply
 def evaluate(environment)
 Number.new(left.evaluate(environment).value * right.evaluate(environment).value)
 end
end

class LessThan
 def evaluate(environment)
 Boolean.new(left.evaluate(environment).value < right.evaluate(environment).value)
 end
end

To check that these big-step expression semantics are correct, here they are in action
on the Ruby console:

44 | Chapter 2: The Meaning of Programs

>> Number.new(23).evaluate({})
=> «23»
>> Variable.new(:x).evaluate({ x: Number.new(23) })
=> «23»
>> LessThan.new(
 Add.new(Variable.new(:x), Number.new(2)),
 Variable.new(:y)
).evaluate({ x: Number.new(2), y: Number.new(5) })
=> «true»

Statements

This style of semantics shines when we come to specify the behavior of statements.
Expressions reduce to other expressions under small-step semantics, but statements
reduce to «do-nothing» and leave a modified environment behind. We can think of big-
step statement evaluation as a process that always turns a statement and an initial
environment into a final environment, avoiding the small-step complication of also
having to deal with the intermediate statement generated by #reduce. Big-step evalua-
tion of an assignment statement, for example, should fully evaluate its expression and
return an updated environment containing the resulting value:

class Assign
 def evaluate(environment)
 environment.merge({ name => expression.evaluate(environment) })
 end
end

Similarly, DoNothing#evaluate will clearly return the unmodified environment, and
If#evaluate has a pretty straightforward job on its hands: evaluate the condition, then
return the environment that results from evaluating either the consequence or the al-
ternative.

class DoNothing
 def evaluate(environment)
 environment
 end
end

class If
 def evaluate(environment)
 case condition.evaluate(environment)
 when Boolean.new(true)
 consequence.evaluate(environment)
 when Boolean.new(false)
 alternative.evaluate(environment)
 end
 end
end

The two interesting cases are sequence statements and «while» loops. For sequences,
we just need to evaluate both statements, but the initial environment needs to be
“threaded through” these two evaluations, so that the result of evaluating the first
statement becomes the environment in which the second statement is evaluated. This

Operational Semantics | 45

can be written in Ruby by using the first evaluation’s result as the argument to the
second:

class Sequence
 def evaluate(environment)
 second.evaluate(first.evaluate(environment))
 end
end

This threading of the environment is vital to allow earlier statements to prepare vari-
ables for later ones:

>> statement =
 Sequence.new(
 Assign.new(:x, Add.new(Number.new(1), Number.new(1))),
 Assign.new(:y, Add.new(Variable.new(:x), Number.new(3)))
)
=> «x = 1 + 1; y = x + 3»
>> statement.evaluate({})
=> {:x=>«2», :y=>«5»}

For «while» statements, we need to think through the stages of completely evaluating
a loop:

• Evaluate the condition to get either «true» or «false».

• If the condition evaluates to «true», evaluate the body to get a new environment,
then repeat the loop within that new environment (i.e., evaluate the whole
«while» statement again) and return the resulting environment.

• If the condition evaluates to «false», return the environment unchanged.

This is a recursive explanation of how a «while» statement should behave. As with
sequence statements, it’s important that the updated environment generated by the
loop body is used for the next iteration; otherwise, the condition will never stop being
«true», and the loop will never get a chance to terminate.14

Once we know how big-step «while» semantics should behave, we can implement
While#evaluate:

class While
 def evaluate(environment)
 case condition.evaluate(environment)
 when Boolean.new(true)
 evaluate(body.evaluate(environment))
 when Boolean.new(false)
 environment
 end
 end
end

14. Of course, there’s nothing to prevent SIMPLE programmers from writing a «while» statement whose
condition never becomes «false» anyway, but if that’s what they ask for then that’s what they’re going
to get.

46 | Chapter 2: The Meaning of Programs

This is where the looping happens: body.evaluate(environment) evaluates the loop
body to get a new environment, then we pass that environment back into the current
method to kick off the next iteration. This means we might stack up many nested
invocations of While#evaluate until the condition eventually becomes «false» and
the final environment is returned.

As with any recursive code, there’s a risk that the Ruby call stack will
overflow if the nested invocations become too deep. Some Ruby imple-
mentations have experimental support for tail call optimization, a tech-
nique that reduces the risk of overflow by reusing the same stack frame
when possible. In the official Ruby implementation (MRI) we can enable
tail call optimization with:

RubyVM::InstructionSequence.compile_option = {
 tailcall_optimization: true,
 trace_instruction: false
}

To confirm that this works properly, we can try evaluating the same «while» statement
we used to check the small-step semantics:

>> statement =
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)
=> «while (x < 5) { x = x * 3 }»
>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«9»}

This is the same result that the small-step semantics gave, so it looks like While#evalu
ate does the right thing.

Applications

Our earlier implementation of small-step semantics makes only moderate use of the
Ruby call stack: when we call #reduce on a large program, that might cause a handful
of nested #reduce calls as the message travels down the abstract syntax tree until it
reaches the piece of code that is ready to reduce.15 But the virtual machine does the
work of tracking the overall progress of the computation by maintaining the current
program and environment as it repeatedly performs small reductions; in particular, the
depth of the call stack is limited by the depth of the program’s syntax tree, since the

15. There is an alternative style of operational semantics, called reduction semantics, which explicitly separates
these “what do we reduce next?” and “how do we reduce it?” phases by introducing so-called reduction
contexts. These contexts are just patterns that concisely describe the places in a program where reduction
can happen, meaning we only need to write reduction rules that perform real computation, thereby
eliminating some of the boilerplate from the semantic definitions of larger languages.

Operational Semantics | 47

nested calls are only being used to traverse the tree looking for what to reduce next,
not to perform the reduction itself.

By contrast, this big-step implementation makes much greater use of the stack, relying
entirely on it to remember where we are in the overall computation, to perform smaller
computations as part of performing larger ones, and to keep track of how much eval-
uation is left to do. What looks like a single call to #evaluate actually turns into a series
of recursive calls, each one evaluating a subprogram deeper within the syntax tree.

This difference highlights the purpose of each approach. Small-step semantics assumes
a simple abstract machine that can perform small operations, and therefore includes
explicit detail about how to produce useful intermediate results; big-step semantics
places the burden of assembling the whole computation on the machine or person
executing it, requiring her to keep track of many intermediate subgoals as she turns the
entire program into a final result in a single operation. Depending on what we wish to
do with a language’s operational semantics—perhaps build an efficient implementa-
tion, prove some properties of programs, or devise some optimizing transformations
—one approach or the other might be more appropriate.

The most influential use of big-step semantics for specifying real programming lan-
guages is Chapter 6 of the original definition of the Standard ML programming lan-
guage, which explains all of the runtime behavior of ML in big-step style. Following
this example, OCaml’s core language has a big-step semantics to complement its more
detailed small-step definition.

Big-step operational semantics is also used by the W3C: the XQuery 1.0 and XPath 2.0
specification uses mathematical inference rules to describe how its languages should
be evaluated, and the XQuery and XPath Full Text 3.0 spec includes a big-step seman-
tics written in XQuery.

It probably hasn’t escaped your attention that, by writing down SIMPLE’s small- and big-
step semantics in Ruby instead of mathematics, we have implemented two different
Ruby interpreters for it. And this is what operational semantics really is: explaining the
meaning of a language by describing an interpreter. Normally, that description would
be written in simple mathematical notation, which makes everything very clear and
unambiguous as long as we can understand it, but comes at the price of being quite
abstract and distanced from the reality of computers. Using Ruby has the disadvantage
of introducing the extra complexity of a real-world programming language (classes,
objects, method calls…) into what’s supposed to be a simplifying explanation, but if
we already understand Ruby, then it’s probably easier to see what’s going on, and being
able to execute the description as an interpreter is a nice bonus.

Denotational Semantics
So far, we’ve looked at the meaning of programming languages from an operational
perspective, explaining what a program means by showing what will happen when it’s

48 | Chapter 2: The Meaning of Programs

executed. Another approach, denotational semantics, is concerned instead with trans-
lating programs from their native language into some other representation.

This style of semantics doesn’t directly address the question of executing a program at
all. Instead, it concerns itself with leveraging the established meaning of another lan-
guage—one that is lower-level, more formal, or at least better understood than the
language being described—in order to explain a new one.

Denotational semantics is necessarily a more abstract approach than operational, be-
cause it just replaces one language with another instead of turning a language into real
behavior. For example, if we needed to explain the meaning of the English verb “walk”
to a person with whom we had no spoken language in common, we could communicate
it operationally by actually walking back and forth. On the other hand, if we needed
to explain “walk” to a French speaker, we could do so denotationally just by telling
them the French verb “marcher”—an undeniably higher level form of communication,
no messy exercise required.

Unsurprisingly, denotational semantics is conventionally used to turn programs into
mathematical objects so they can be studied and manipulated with mathematical tools,
but we can get some of the flavor of this approach by looking at how to denote
SIMPLE programs in some other way.

Let’s try giving a denotational semantics for SIMPLE by translating it into Ruby.16 In
practice, this means turning an abstract syntax tree into a string of Ruby code that
somehow captures the intended meaning of that syntax.

But what is the “intended meaning”? What should Ruby denotations of our expressions
and statements look like? We’ve already seen operationally that an expression takes an
environment and turns it into a value; one way to express this in Ruby is with a proc
that takes some argument representing an environment argument and returns some
Ruby object representing a value. For simple constant expressions like «5» and
«false», we won’t be using the environment at all, so we only need to worry about how
their eventual result can be represented as a Ruby object. Fortunately, Ruby already
has objects specifically designed to represent these values: we can use the Ruby value
5 as the result of the SIMPLE expression «5», and likewise, the Ruby value false as the
result of «false».

Expressions
We can use this idea to write implementations of a #to_ruby method for the Number and
Boolean classes:

class Number
 def to_ruby

16. This means we’ll be writing Ruby code that generates Ruby code, but the choice of the same language as
both the denotation language and the implementation metalanguage is only to keep things simple. We
could just as easily write Ruby that generates strings containing JavaScript, for example.

Denotational Semantics | 49

 "-> e { #{value.inspect} }"
 end
end

class Boolean
 def to_ruby
 "-> e { #{value.inspect} }"
 end
end

Here is how they behave on the console:

>> Number.new(5).to_ruby
=> "-> e { 5 }"
>> Boolean.new(false).to_ruby
=> "-> e { false }"

Each of these methods produces a string that happens to contain Ruby code, and be-
cause Ruby is a language whose meaning we already understand, we can see that both
of these strings are programs that build procs. Each proc takes an environment argu-
ment called e, completely ignores it, and returns a Ruby value.

Because these denotations are strings of Ruby source code, we can check their behavior
in IRB by using Kernel#eval to turn them into real, callable Proc objects:17

>> proc = eval(Number.new(5).to_ruby)
=> #<Proc (lambda)>
>> proc.call({})
=> 5
>> proc = eval(Boolean.new(false).to_ruby)
=> #<Proc (lambda)>
>> proc.call({})
=> false

At this stage, it’s tempting to avoid procs entirely and use simpler im-
plementations of #to_ruby that just turn Number.new(5) into the string
'5' instead of '-> e { 5 }' and so on, but part of the point of building
a denotational semantics is to capture the essence of constructs from
the source language, and in this case, we’re capturing the idea that ex-
pressions in general require an environment, even though these specific
expressions don’t make use of it.

To denote expressions that do use the environment, we need to decide how environ-
ments are going to be represented in Ruby. We’ve already seen environments in our
operational semantics, and since they were implemented in Ruby, we can just reuse
our earlier idea of representing an environment as a hash. The details will need to
change, though, so beware the subtle difference: in our operational semantics, the en-

17. We can only do this because Ruby is doing double duty as both the implementation and denotation
languages. If our denotations were JavaScript source code, we’d have to try them out in a JavaScript
console.

50 | Chapter 2: The Meaning of Programs

vironment lived inside the virtual machine and associated variable names with SIMPLE

abstract syntax trees like Number.new(5), but in our denotational semantics, the envi-
ronment exists in the language we’re translating our programs into, so it needs to make
sense in that world instead of the “outside world” of a virtual machine.

In particular, this means that our denotational environments should associate variable
names with native Ruby values like 5 rather than with objects representing SIMPLE syn-
tax. We can think of an operational environment like { x: Number.new(5) } as having
a denotation of '{ x: 5 }' in the language we’re translating into, and we just need to
keep our heads straight because both the implementation metalanguage and the de-
notation language happen to be Ruby.

Now we know that the environment will be a hash, we can implement Vari
able#to_ruby:

class Variable
 def to_ruby
 "-> e { e[#{name.inspect}] }"
 end
end

This translates a variable expression into the source code of a Ruby proc that looks up
the appropriate value in the environment hash:

>> expression = Variable.new(:x)
=> «x»
>> expression.to_ruby
=> "-> e { e[:x] }"
>> proc = eval(expression.to_ruby)
=> #<Proc (lambda)>
>> proc.call({ x: 7 })
=> 7

An important aspect of denotational semantics is that it’s compositional: the denotation
of a program is constructed from the denotations of its parts. We can see this compo-
sitionality in practice when we move onto denoting larger expressions like Add, Multi
ply, and LessThan:

class Add
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) + (#{right.to_ruby}).call(e) }"
 end
end

class Multiply
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) * (#{right.to_ruby}).call(e) }"
 end
end

class LessThan
 def to_ruby
 "-> e { (#{left.to_ruby}).call(e) < (#{right.to_ruby}).call(e) }"

Denotational Semantics | 51

 end
end

Here we’re using string concatenation to compose the denotation of an expression out
of the denotations of its subexpressions. We know that each subexpression will be
denoted by a proc’s Ruby source, so we can use them as part of a larger piece of Ruby
source that calls those procs with the supplied environment and does some computa-
tion with their return values. Here’s what the resulting denotations look like:

>> Add.new(Variable.new(:x), Number.new(1)).to_ruby
=> "-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) }"
>> LessThan.new(Add.new(Variable.new(:x), Number.new(1)), Number.new(3)).to_ruby
=> "-> e { (-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) }).call(e) < ↵
(-> e { 3 }).call(e) }"

These denotations are now complicated enough that it’s difficult to see whether they
do the right thing. Let’s try them out to make sure:

>> environment = { x: 3 }
=> {:x=>3}
>> proc = eval(Add.new(Variable.new(:x), Number.new(1)).to_ruby)
=> #<Proc (lambda)>
>> proc.call(environment)
=> 4
>> proc = eval(
 LessThan.new(Add.new(Variable.new(:x), Number.new(1)), Number.new(3)).to_ruby
)
=> #<Proc (lambda)>
>> proc.call(environment)
=> false

Statements
We can specify the denotational semantics of statements in a similar way, although
remember from the operational semantics that evaluating a statement produces a new
environment rather than a value. This means that Assign#to_ruby needs to produce
code for a proc whose result is an updated environment hash:

class Assign
 def to_ruby
 "-> e { e.merge({ #{name.inspect} => (#{expression.to_ruby}).call(e) }) }"
 end
end

Again, we can check this on the console:

>> statement = Assign.new(:y, Add.new(Variable.new(:x), Number.new(1)))
=> «y = x + 1»
>> statement.to_ruby
=> "-> e { e.merge({ :y => (-> e { (-> e { e[:x] }).call(e) + (-> e { 1 }).call(e) })↵
.call(e) }) }"
>> proc = eval(statement.to_ruby)
=> #<Proc (lambda)>

52 | Chapter 2: The Meaning of Programs

>> proc.call({ x: 3 })
=> {:x=>3, :y=>4}

As always, the semantics of DoNothing is very simple:

class DoNothing
 def to_ruby
 '-> e { e }'
 end
end

For conditional statements, we can translate SIMPLE’s «if (…) { … } else { … }» into
a Ruby if … then … else … end, making sure that the environment gets to all the places
where it’s needed:

class If
 def to_ruby
 "-> e { if (#{condition.to_ruby}).call(e)" +
 " then (#{consequence.to_ruby}).call(e)" +
 " else (#{alternative.to_ruby}).call(e)" +
 " end }"
 end
end

As in big-step operational semantics, we need to be careful about specifying the se-
quence statement: the result of evaluating the first statement is used as the environment
for evaluating the second.

class Sequence
 def to_ruby
 "-> e { (#{second.to_ruby}).call((#{first.to_ruby}).call(e)) }"
 end
end

And lastly, as with conditionals, we can translate «while» statements into procs that
use Ruby while to repeatedly execute the body before returning the final environment:

class While
 def to_ruby
 "-> e {" +
 " while (#{condition.to_ruby}).call(e); e = (#{body.to_ruby}).call(e); end;" +
 " e" +
 " }"
 end
end

Even a simple «while» can have quite a verbose denotation, so it’s worth getting the
Ruby interpreter to check that its meaning is correct:

>> statement =
 While.new(
 LessThan.new(Variable.new(:x), Number.new(5)),
 Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)
=> «while (x < 5) { x = x * 3 }»
>> statement.to_ruby
=> "-> e { while (-> e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e) }).call(e); ↵

Denotational Semantics | 53

e = (-> e { e.merge({ :x => (-> e { (-> e { e[:x] }).call(e) * (-> e { 3 }).call(e) ↵
}).call(e) }) }).call(e); end; e }"
>> proc = eval(statement.to_ruby)
=> #<Proc (lambda)>
>> proc.call({ x: 1 })
=> {:x=>9}

Comparing Semantic Styles
«while» is a good example of the difference between small-step, big-step, and denota-
tional semantics.

The small-step operational semantics of «while» is written as a reduction rule for an
abstract machine. The overall looping behavior isn’t part of the rule’s action—reduc-
tion just turns a «while» statement into an «if» statement—but it emerges as a conse-
quence of the future reductions performed by the machine. To understand what
«while» does, we need to look at all of the small-step rules and work out how they
interact over the course of a SIMPLE program’s execution.

«while»’s big-step operational semantics is written as an evaluation rule that shows
how to compute the final environment directly. The rule contains a recursive call to
itself, so there’s an explicit indication that «while» will cause a loop during evaluation,
but it’s not quite the kind of loop that a SIMPLE programmer would recognize. Big-step
rules are written in a recursive style, describing the complete evaluation of an expression
or statement in terms of the evaluation of other pieces of syntax, so this rule tells us
that the result of evaluating a «while» statement may depend upon the result of evalu-
ating the same statement in a different environment, but it requires a leap of intuition
to connect this idea with the iterative behavior that «while» is supposed to exhibit.
Fortunately the leap isn’t too large: a bit of mathematical reasoning can show that the
two kinds of loop are equivalent in principle, and when the metalanguage supports tail
call optimization, they’re also equivalent in practice.

The denotational semantics of «while» shows how to rewrite it in Ruby, namely by
using Ruby’s while keyword. This is a much more direct translation: Ruby has native
support for iterative loops, and the denotation rule shows that «while» can be imple-
mented with that feature. There’s no leap required to understand how the two kinds
of loop relate to each other, so if we understand how Ruby while loops work, we un-
derstand SIMPLE «while» loops too. Of course, this means we’ve just converted the
problem of understanding SIMPLE into the problem of understanding the denotation
language, which is a serious disadvantage when that language is as large and ill-specified
as Ruby, but it becomes an advantage when we have a small mathematical language
for writing denotations.

Applications
Having done all this work, what does this denotational semantics achieve? Its main
purpose is to show how to translate SIMPLE into Ruby, using the latter as a tool to explain
what various language constructs mean. This happens to give us a way to execute

54 | Chapter 2: The Meaning of Programs

SIMPLE programs—because we’ve written the rules of the denotational semantics in
executable Ruby, and because the rules’ output is itself executable Ruby—but that’s
incidental, since we could have given the rules in plain English and used some mathe-
matical language for the denotations. The important part is that we’ve taken an arbi-
trary language of our own devising and converted it into a language that someone or
something else can understand.

To give this translation some explanatory power, it’s helpful to bring parts of the lan-
guage’s meaning to the surface instead of allowing them to remain implicit. For exam-
ple, this semantics makes the environment explicit by representing it as a tangible Ruby
object—a hash that’s passed in and out of procs—instead of denoting variables as real
Ruby variables and relying on Ruby’s own subtle scoping rules to specify how variable
access works. In this respect the semantics is doing more than just offloading all the
explanatory effort onto Ruby; it uses Ruby as a simple foundation, but does some extra
work on top to show exactly how environments are used and changed by different
program constructs.

We saw earlier that operational semantics is about explaining a language’s meaning by
designing an interpreter for it. By contrast, the language-to-language translation of de-
notational semantics is like a compiler: in this case, our implementations of #to_ruby
effectively compile SIMPLE into Ruby. None of these styles of semantics necessarily says
anything about how to efficiently implement an interpreter or compiler for a language,
but they do provide an official baseline against which the correctness of any efficient
implementation can be judged.

These denotational definitions also show up in the wild. Older versions of the Scheme
standard use denotational semantics to specify the core language, unlike the current
standard’s small-step operational semantics, and the development of the XSLT docu-
ment-transformation language was guided by Philip Wadler’s denotational definitions
of XSLT patterns and XPath expressions.

See “Semantics” on page 83 for a practical example of using denotational semantics
to specify the meaning of regular expressions.

Formal Semantics in Practice
This chapter has shown several different ways of approaching the problem of giving
computer programs a meaning. In each case, we’ve avoided the mathematical details
and tried to get a flavor of their intent by using Ruby, but formal semantics is usually
done with mathematical tools.

Formality
Our tour of formal semantics hasn’t been especially formal. We haven’t paid any serious
attention to mathematical notation, and using Ruby as a metalanguage has meant we’ve

Formal Semantics in Practice | 55

focused more on different ways of executing programs than on ways of understanding
them. Proper denotational semantics is concerned with getting to the heart of programs’
meanings by turning them into well-defined mathematical objects, with none of the
evasiveness of representing a SIMPLE «while» loop with a Ruby while loop.

The branch of mathematics called domain theory was developed specif-
ically to provide definitions and objects that are useful for denotational
semantics, allowing a model of computation based on fixed points of
monotonic functions on partially ordered sets. Programs can be under-
stood by “compiling” them into mathematical functions, and the tech-
niques of domain theory can be used to prove interesting properties of
these functions.

On the other hand, while we only vaguely sketched denotational semantics in Ruby,
our approach to operational semantics is closer in spirit to its formal presentation: our
definitions of #reduce and #evaluate methods are really just Ruby translations of math-
ematical inference rules.

Finding Meaning
An important application of formal semantics is to give an unambiguous specification
of the meaning of a programming language, rather than relying on more informal ap-
proaches like natural-language specification documents and “specification by imple-
mentation.” A formal specification has other uses too, such as proving properties of
the language in general and of specific programs in particular, proving equivalences
between programs in the language, and investigating ways of safely transforming pro-
grams to make them more efficient without changing their behavior.

For example, since an operational semantics corresponds quite closely to the imple-
mentation of an interpreter, computer scientists can treat a suitable interpreter as an
operational semantics for a language, and then prove its correctness with respect to a
denotational semantics for that language—this means proving that there is a sensible
connection between the meanings given by the interpreter and those given by the de-
notational semantics.

Denotational semantics has the advantage of being more abstract than operational se-
mantics, by ignoring the detail of how a program executes and concentrating instead
on how to convert it into a different representation. For example, this makes it possible
to compare two programs written in different languages, if a denotational semantics
exists to translate both languages into some shared representation.

This degree of abstraction can make denotational semantics seem circuitous. If the
problem is how to explain the meaning of a programming language, how does trans-
lating one language into another get us any closer to a solution? A denotation is only
as good as its meaning; in particular, a denotational semantics only gets us closer to

56 | Chapter 2: The Meaning of Programs

being able to actually execute a program if the denotation language has some opera-
tional meaning, a semantics of its own that shows how it may be executed instead of
how to translate it into yet another language.

Formal denotational semantics uses abstract mathematical objects, usually functions,
to denote programming language constructs like expressions and statements, and be-
cause mathematical convention dictates how to do things like evaluate functions, this
gives a direct way of thinking about the denotation in an operational sense. We’ve taken
the less formal approach of thinking of a denotational semantics as a compiler from
one language into another, and in reality, this is how most programming languages
ultimately get executed: a Java program will get compiled into bytecode by javac, the
bytecode will get just-in-time compiled into x86 instructions by the Java virtual ma-
chine, then a CPU will decode each x86 instruction into RISC-like microinstructions
for execution on a core…where does it end? Is it compilers, or virtual machines, all the
way down?

Of course programs do eventually execute, because the tower of semantics finally bot-
toms out at an actual machine: electrons in semiconductors, obeying the laws of phys-
ics.18 A computer is a device for maintaining this precarious structure, many complex
layers of interpretation balanced on top of one another, allowing human-scale ideas
like multitouch gestures and while loops to be gradually translated down into the
physical universe of silicon and electricity.

Alternatives
The semantic styles seen in this chapter go by many different names. Small-step se-
mantics is also known as structural operational semantics and transition semantics; big-
step semantics is more often called natural semantics or relational semantics; and de-
notational semantics is also called fixed-point semantics or mathematical semantics.

Other styles of formal semantics are available. One alternative is axiomatic semantics,
which describes the meaning of a statement by making assertions about the state of the
abstract machine before and after that statement executes: if one assertion (the pre-
condition) is initially true before the statement is executed, then the other assertion (the
postcondition) will be true afterward. Axiomatic semantics is useful for verifying the
correctness of programs: as statements are plugged together to make larger programs,
their corresponding assertions can be plugged together to make larger assertions, with
the goal of showing that an overall assertion about a program matches up with its
intended specification.

Although the details are different, axiomatic semantics is the style that best character-
izes the RubySpec project, an “executable specification for the Ruby programming
language” that uses RSpec-style assertions to describe the behavior of Ruby’s built-in

18. Or, in the case of a mechanical computer like the Analytical Engine designed by Charles Babbage in 1837,
cogs and paper obeying the laws of physics.

Formal Semantics in Practice | 57

language constructs, as well as its core and standard libraries. For example, here’s a
fragment of RubySpec’s description of the Array#<< method:

describe "Array#<<" do
 it "correctly resizes the Array" do
 a = []
 a.size.should == 0
 a << :foo
 a.size.should == 1
 a << :bar << :baz
 a.size.should == 3

 a = [1, 2, 3]
 a.shift
 a.shift
 a.shift
 a << :foo
 a.should == [:foo]
 end
end

Implementing Parsers
In this chapter, we’ve been building the abstract syntax trees of SIMPLE programs man-
ually—writing longhand Ruby expressions like Assign.new(:x, Add.new(Vari
able.new(:x), Number.new(1)))—rather than beginning with raw SIMPLE source code
like 'x = x + 1' and using a parser to automatically turn it into a syntax tree.

Implementing a SIMPLE parser entirely from scratch would involve a lot of detail and
take us on a long diversion from our discussion of formal semantics. Hacking on toy
programming languages is fun, though, and thanks to the existence of parsing tools
and libraries it’s not especially difficult to construct a parser by relying on other people’s
work, so here’s a brief outline of how to do it.

One of the best parsing tools available for Ruby is Treetop, a domain-specific language
for describing syntax in a way that allows a parser to be automatically generated. A
Treetop description of a language’s syntax is written as a parsing expression grammar
(PEG), a collection of simple, regular-expression-like rules that are easy to write and to
understand. Best of all, these rules can be annotated with method definitions so that
the Ruby objects generated by the parsing process can be given their own behavior.
This ability to define both a syntactic structure and a collection of Ruby code that
operates on that structure makes Treetop ideal for sketching out the syntax of a lan-
guage and giving it an executable semantics.

To give us a taste of how this works, here’s a cut-down version of the Treetop grammar
for SIMPLE, containing only the rules needed to parse the string 'while (x < 5) { x =
x * 3 }':

grammar Simple
 rule statement

58 | Chapter 2: The Meaning of Programs

 while / assign
 end

 rule while
 'while (' condition:expression ') { ' body:statement ' }' {
 def to_ast
 While.new(condition.to_ast, body.to_ast)
 end
 }
 end

 rule assign
 name:[a-z]+ ' = ' expression {
 def to_ast
 Assign.new(name.text_value.to_sym, expression.to_ast)
 end
 }
 end

 rule expression
 less_than
 end

 rule less_than
 left:multiply ' < ' right:less_than {
 def to_ast
 LessThan.new(left.to_ast, right.to_ast)
 end
 }
 /
 multiply
 end

 rule multiply
 left:term ' * ' right:multiply {
 def to_ast
 Multiply.new(left.to_ast, right.to_ast)
 end
 }
 /
 term
 end

 rule term
 number / variable
 end

 rule number
 [0-9]+ {
 def to_ast
 Number.new(text_value.to_i)
 end
 }
 end

Implementing Parsers | 59

 rule variable
 [a-z]+ {
 def to_ast
 Variable.new(text_value.to_sym)
 end
 }
 end
end

This language looks a little like Ruby, but the similarity is only superficial; grammars
are written in the special Treetop language. The rule keyword introduces a new rule
for parsing a particular kind of syntax, and the expressions inside each rule describe
the structure of the strings it will recognize. Rules can recursively call other rules—the
while rule calls the expression and statement rules, for instance—and parsing begins
at the first rule, which is statement in this grammar.

The order in which the expression-syntax rules call each other reflects the precedence
of SIMPLE’s operators. The expression rule calls less_than, which then immediately calls
multiply to give it a chance to match the * operator somewhere in the string before
less_than gets a chance to match the lower-precedence < operator. This makes sure
that '1 * 2 < 3' is parsed as «(1 * 2) < 3» and not «1 * (2 < 3)».

To keep things simple, this grammar makes no attempt to constrain
what kinds of expression can appear inside other expressions, which
means the parser will accept some programs that are obviously wrong.

For example, we have two rules for binary expressions—less_than and
multiply—but the only reason for having separate rules is to enforce
operator precedence, so each rule only requires that a higher precedence
rule matches its left operand and a same-or-higher-precedence one
matches its right. This creates the situation where a string like '1 < 2 <
3' will be parsed successfully, even though the semantics of SIMPLE won’t
be able to give the resulting expression a meaning.

Some of these problems can be resolved by tweaking the grammar, but
there will always be other incorrect cases that the parser can’t spot. We’ll
separate the two concerns by keeping the parser as liberal as possible
and using a different technique to detect invalid programs in Chapter 9.

Most of the rules in the grammar are annotated with Ruby code inside curly brackets.
In each case, this code defines a method called #to_ast, which will be available on the
corresponding syntax objects built by Treetop when it parses a SIMPLE program.

If we save this grammar into a file called simple.treetop, we can load it with Treetop to
generate a SimpleParser class. This parser allows us to turn a string of SIMPLE source
code into a representation built out of Treetop’s SyntaxNode objects:

>> require 'treetop'
=> true
>> Treetop.load('simple')
=> SimpleParser

60 | Chapter 2: The Meaning of Programs

>> parse_tree = SimpleParser.new.parse('while (x < 5) { x = x * 3 }')
=> SyntaxNode+While1+While0 offset=0, "…5) { x = x * 3 }" (to_ast,condition,body):
 SyntaxNode offset=0, "while ("
 SyntaxNode+LessThan1+LessThan0 offset=7, "x < 5" (to_ast,left,right):
 SyntaxNode+Variable0 offset=7, "x" (to_ast):
 SyntaxNode offset=7, "x"
 SyntaxNode offset=8, " < "
 SyntaxNode+Number0 offset=11, "5" (to_ast):
 SyntaxNode offset=11, "5"
 SyntaxNode offset=12, ") { "
 SyntaxNode+Assign1+Assign0 offset=16, "x = x * 3" (to_ast,name,expression):
 SyntaxNode offset=16, "x":
 SyntaxNode offset=16, "x"
 SyntaxNode offset=17, " = "
 SyntaxNode+Multiply1+Multiply0 offset=20, "x * 3" (to_ast,left,right):
 SyntaxNode+Variable0 offset=20, "x" (to_ast):
 SyntaxNode offset=20, "x"
 SyntaxNode offset=21, " * "
 SyntaxNode+Number0 offset=24, "3" (to_ast):
 SyntaxNode offset=24, "3"
 SyntaxNode offset=25, " }"

This SyntaxNode structure is a concrete syntax tree: it’s designed specifically for manip-
ulation by the Treetop parser and contains a lot of extraneous information about how
its nodes are related to the raw source code that produced them. Here’s what the
Treetop documentation has to say about it:

Please don’t try to walk down the syntax tree yourself, and please don’t use the tree as
your own convenient data structure. It contains many more nodes than your application
needs, often even more than one for every character of input.

Instead, add methods to the root rule that return the information you require in a sensible
form. Each rule can call its sub-rules, and this method of walking the syntax tree is much
preferable to attempting to walk it from the outside.

And that’s what we’ve done. Rather than manipulate this messy tree directly, we’ve
used annotations in the grammar to define a #to_ast method on each of its nodes. If
we call that method on the root node, it’ll build an abstract syntax tree made from
SIMPLE syntax objects:

>> statement = parse_tree.to_ast
=> «while (x < 5) { x = x * 3 }»

So we’ve automatically converted source code to an abstract syntax tree, and now we
can use that tree to explore the meaning of the program in the usual ways:

>> statement.evaluate({ x: Number.new(1) })
=> {:x=>«9»}
>> statement.to_ruby
=> "-> e { while (-> e { (-> e { e[:x] }).call(e) < (-> e { 5 }).call(e) }).call(e); ↵
e = (-> e { e.merge({ :x => (-> e { (-> e { e[:x] }).call(e) * (-> e { 3 }).call(e) ↵
}).call(e) }) }).call(e); end; e }"

Implementing Parsers | 61

Another drawback of this parser, and of Treetop in general, is that it
generates a right-associative concrete syntax tree. This means that the
string '1 * 2 * 3 * 4' is parsed as if it had been written '1 * (2 * (3
* 4))':

>> expression = SimpleParser.new.parse('1 * 2 * 3 * 4', root: :expression).to_ast
=> «1 * 2 * 3 * 4»
>> expression.left
=> «1»
>> expression.right
=> «2 * 3 * 4»

But multiplication is conventionally left-associative: when we write '1
* 2 * 3 * 4' we actually mean '((1 * 2) * 3) * 4', with the numbers
grouped together starting at the lefthand end of the expression, not the
right. That doesn’t matter much for multiplication—both ways produce
the same result when evaluated—but for operations like subtraction and
division, it creates a problem, because «((1 - 2) - 3) - 4» does not
evaluate to the same value as «1 - (2 - (3 - 4))».

To fix this, we’d have to make the rules and #to_ast implementations
more complicated. See “Parsing” on page 204 for a Treetop grammar
that builds a left-associative AST.

It’s convenient to be able to parse SIMPLE programs like this, but Treetop is doing all
the hard work for us, so we haven’t learned much about how a parser actually works.
In “Parsing with Pushdown Automata” on page 125, we’ll see how to implement a
parser directly.

62 | Chapter 2: The Meaning of Programs

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

http://www.android.com/market/
http://amazon.com
http://www.oreilly.com
http://shop.oreilly.com/product/0636920025481.do

	Table of Contents
	Part I. Programs and Machines
	Chapter 2. The Meaning of Programs
	The Meaning of “Meaning”
	Syntax
	Operational Semantics
	Small-Step Semantics
	Expressions
	Statements
	Correctness
	Applications

	Big-Step Semantics
	Expressions
	Statements
	Applications

	Denotational Semantics
	Expressions
	Statements
	Applications

	Formal Semantics in Practice
	Formality
	Finding Meaning
	Alternatives

	Implementing Parsers

